Using the Coronary Artery Calcium Score to Predict Coronary Heart Disease Events

A Systematic Review and Meta-analysis

Mark J. Pletcher, MD, MPH; Jeffrey A. Tice, MD; Michael Pignone, MD, MPH; Warren S. Browner, MD, MPH

Background: Primary prevention of coronary heart disease is most appropriate for patients at relatively high risk. Measurement of coronary artery calcium has been proposed as a way to improve risk assessment, but it is unknown whether it adds predictive information to standard risk factor assessment.

Methods: We systematically searched electronic databases for relevant articles published between January 1, 1980, and March 19, 2003, and hand searched bibliographies. We included studies that reported measuring the coronary artery calcium score by electron beam computed tomography in asymptomatic subjects and subsequent follow-up of those patients for coronary events and that presented score-specific relative risks, adjusted for established risk factors. Two abstractors verified inclusion criteria and abstracted data from each study. We estimated adjusted relative risks associated with 3 standard categories of coronary artery calcium scores (1-100, 101-400, and >400), compared with a score of 0, and used a random-effects model for meta-analysis.

Results: Meta-analysis of the 4 studies meeting inclusion criteria yielded a summary adjusted relative risk of 2.1 (95% confidence interval, 1.6-2.9) for a coronary artery calcium score of 1 to 100. Relative risk estimates for higher calcium scores were higher, ranging from 3.0 to 17.0 but varied significantly among studies. Subgroup analyses suggested that differences among studies in outcome adjudication (blinded or not), measurement of other risk factors (direct or by patient history), tomographic slice thickness (3 or 6 mm), and/or proportion of female study subjects may account for this heterogeneity.

Conclusion: The coronary artery calcium score is an independent predictor of coronary heart disease events.

Arch Intern Med. 2004;164:1285-1292

RECENTLY UPDATED EVIDENCE-based guidelines call on internists to make a careful assessment of their patients’ baseline coronary heart disease (CHD) risk and to target primary prevention efforts such as cholesterol-lowering drugs1 and aspirin2 to high-risk patients. Predicting who will develop CHD events, however, is difficult. Standard risk factor analysis can help stratify patients into risk groups, but events are still uncommon in patients considered to be at high risk (2% per year) and not rare in patients considered to be at lower risk (0.5%-1.0% per year).1 More effective assessment of CHD risk may improve the cost-effectiveness and safety of such primary prevention efforts.

From the Department of Epidemiology and Biostatistics (Drs Pletcher and Browner), Division of General Internal Medicine (Drs Pletcher and Tice), and Department of Medicine (Dr Browner), University of California, San Francisco; the Division of General Internal Medicine and Clinical Epidemiology, University of North Carolina–Chapel Hill School of Medicine (Dr Pignone); and the Research Institute, California Pacific Medical Center (Dr Browner). The authors have no relevant financial interest in this article.

©2004 American Medical Association. All rights reserved.
lowed-up over time for CHD events. These studies, as well as a meta-analysis,6 have reported that higher CAC scores are associated with higher risks of CHD events. The question of whether the CAC score adds incremental value to standard CHD risk factor assessment, however, remains controversial.

In the present study, we systematically searched published literature, extracted and standardized relative risk estimates adjusted for established CHD risk factors from each eligible study, calculated clinically relevant summary estimates of relative risk for patients with different CAC scores, and investigated why results might differ among studies.

METHODS

LITERATURE REVIEW

We searched MEDLINE and Current Contents databases for articles published between January 1, 1980, and July 25, 2001, and PubMed for articles published between July 1, 2001, and March 19, 2003. Because no specific Medical Subject Headings (MeSH) are consistently used for studies of CAC, we used a broad title word search to maximize sensitivity for identifying all potentially relevant articles and relied on manual review to discard the many irrelevant articles we captured. We used the following search strategies: MEDLINE, j (xxs cardiovascular diseases or xxs coronary vessels) and (tw coronary calc# or tw electron or tw ultrafast); Current Contents, j (tw coronary calc# or tw electron tomography or tw electron ct or tw ultrafast ct or tw ultrafast tomography); and PubMed, ("Coronary Artery Disease"[Mesh] OR "coronary vessels"[Mesh]) AND ((coronary[ti] OR calcium[ti] OR calcification[ti]) OR calcifications[ti]) OR (electron[ti] AND (tomography[ti] OR ct[ti]) OR (ultrafast[ti] AND (tomography[ti] OR ct[ti]))). We also reviewed bibliographies of key articles and consulted with experts in the field to identify all important patient cohorts. Abstracts and titles were scanned and articles were eliminated if inclusion criteria were clearly not met. When unclear, articles were reviewed in full. Studies reported in abstract form only were excluded.

STUDY ELIGIBILITY

We included articles that reported identifying a cohort of individuals who were initially without symptoms of active coronary artery disease, and who were studied with noncontrast EBCT to obtain a CAC score and then followed up over time for the development of CHD events. Only articles that presented CAC score–specific relative risks adjusted for established CHD risk factors such as age, hypertension, high cholesterol, diabetes, and smoking were included. Articles that presented duplicate or overlapping data were grouped, and only the article presenting the data in the most definitive and extractable form was included. Two of us (M.J.P. and M.P.) independently abstracted inclusion criteria for all articles presenting CAC score–specific relative risks.

DATA EXTRACTION

Two of us (M.J.P. and J.A.T.) abstracted data from each eligible article using a standard data extraction form, collecting data on study subjects (recruitment source, selection criteria, demographics, and CHD risk factors with method of determination), the EBCT protocol used (scanner make and model, slice thickness, and scoring method), follow-up (tracking method, mean follow-up time, and proportion lost to follow-up), method of outcome adjudication (types and definitions of CHD events recorded, formal outcome adjudication by more than 1 investigator, and blinding of adjudicators to CAC score), and blinding of study subjects and their physicians to the CAC score. Disagreements were resolved by consensus. Adjusted CAC score–specific odds ratios, relative risks, or hazard ratios were abstracted in whatever categories or form was available. Confidence intervals (CIs) from 1 study1 were supplied at our request in a written communication from the first author (Nathan D. Wong, PhD, July 9, 2002).

DATA STANDARDIZATION

To provide clinically relevant and easily applied results, we standardized results into 4 CAC score categories (0, 1-100, 101-400, and >400). These or similar categories have been used in several previous publications8-9 and represent a simple categorization of the range of CAC scores encountered in clinical practice. This standardization was accomplished in 1 of 2 ways, depending on how the data were presented.

There were 2 articles that reported adjusted relative risk measurements in CAC score categories that were different than the categories we chose.7,10 For these articles, we first calculated crude relative risks from presented data and then estimated the effects of multivariate adjustment on the point estimate and standard error by comparing these crude estimates with the adjusted estimates presented in each article. We then estimated crude relative risks in each standard CAC score category (1-100, 101-400, and >400, compared with 0) and applied the multivariate adjustment effect, as estimated above.

The other 2 articles11,12 presented adjusted relative risk measurements per unit increase in the CAC score (log-transformed,11 or age- and sex-adjusted percentile—the “CS%” score12). To obtain an adjusted relative risk estimate for each of our standard CAC score categories (1-100, 101-400, and >400, compared with 0), we estimated the median absolute CAC score and the median CS% score in each of these categories using published cross-sectional data,12 and assuming that the subject of our investigation was a 50- to 54-year-old man. The median absolute CAC scores were 0 (for a CAC score of 0), 26 (in the 1-100 category), 183 (in the 101-400 category), and 664 (in the >400 category). The median CS% scores were 0% (for a CAC score of 0), 31% (in the 1-100 category), 75% (in the 101-400 category), and 94% (in the >400 category). These representative scores were used to calculate adjusted relative risk estimates using the equations presented in each article.

The primary assumptions we made to standardize the data were that (1) CAC scores were distributed uniformly within CAC score categories,7,11 (2) the maximum CAC score was 1000,7,11 (3) the effect of multivariate adjustment was homogeneous across categories within each study,7,11 and (4) the subject of interest was a 50- to 54-year-old man.11,12 Assumptions 2 and 4 were amenable to sensitivity analyses.

DATA SYNTHESIS

Summary adjusted odds ratios for each standard CAC score category were calculated by combining standardized odds ratios from each study using a random effects model.13 These were reported as relative risks because outcomes were rare. Heterogeneity was assessed statistically, using a conservative P value cutoff of .10.14 Analyses were repeated using a fixed effects model for comparison. Statistical analyses were performed using Stata 7.0 (Stata Corp, College Station, Tex).

SUBGROUP ANALYSES

To explore potential sources of heterogeneity and assess the effects of potentially important differences in study methodology, we performed several subgroup analyses. We grouped
studies according to (1) types of outcomes included, (2) whether formal blinded outcome adjudication was performed, (3) tomographic scan thickness (3 mm vs 6 mm), (4) overall annual CHD rate, and (5) proportion of female subjects. Statistical testing for interaction and linear trends were performed using meta-regression commands available in Stata 7.0.

RESULTS

LITERATURE SEARCH

We identified 2809 articles from MEDLINE, Current Contents, and PubMed that met our preliminary search criteria and eliminated 1196 based on the title, 1500 based on abstract, and 101 based on review of the full-text article. In total, 1616 were eliminated because EBCT was not used, 333 because CAC was not measured (EBCT was used for a different purpose), 313 because no follow-up for CHD events was documented, 19 because the patients were not asymptomatic, and 516 because they were duplicative, review articles, editorials, conference proceedings, or other types of articles not containing original data. This left 13 articles for consideration (Table 1).

DATA EXTRACTION AND STANDARDIZATION

Four studies met all inclusion criteria.7,10-12 There were differences in study subjects, EBCT scan thickness, follow-up completeness, types of CHD events recorded, outcome adjudication methodology, annual event rate, and method of assessing CHD risk factors among the 4 studies (Table 2). No study reported blinded study subjects and/or physicians to the subject’s CAC score. Mean follow-up was 3.6 years or less. Most studies assessed risk factors by self-report rather than direct measurement. In total, these studies represent over 13000 person-years of observation time.

We estimated adjusted relative risks for each CAC score category in each study (Table 3). This process led to wide confidence intervals for the article by Arad et al10 because only 1 subject in the reference (CAC score=0) category had a coronary event during follow-up.

DATA SYNTHESIS (META-ANALYSIS)

After adjusting for established CHD risk factors, the risk of CHD events increased progressively with greater calcification (Figure 1). The relative risk estimates among studies were similar for the CAC score 1 to 100 category (P for heterogeneity = .48) but varied significantly for the 101 to 400 (P = .07) and greater than 400 (P = .02) categories. Fixed-effects modeling yielded slightly different results: adjusted relative risks were 2.1 (95% CI, 1.6-2.9) for the CAC score 1 to 100, 4.2 (95% CI, 2.5-7.2) for the 101 to 400, and 7.2 (95% CI, 3.9-13.0) for the greater than 400 categories compared with the 0 category.

SENSITIVITY ANALYSES

Adjusted relative risks and CIs changed only slightly when we varied our assumptions (Table 4). Relative risks were statistically significant under any set of assumptions.

SUBGROUP ANALYSES

We grouped studies according to study characteristics that we thought could affect the relative risks they re-

Table 1. Articles Presenting Data on Coronary Heart Disease Outcomes and CAC Scores

<table>
<thead>
<tr>
<th>Source</th>
<th>Is This the Definitive Data Presentation?*</th>
<th>Patients Asymptomatic?†</th>
<th>Patients Followed up Prospectively After EBCT Scan?</th>
<th>Multivariate Adjustment Attempted?</th>
<th>CAC Score–Specific Risk Extractable?‡</th>
<th>Included in Meta-analysis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad et al,10 1996</td>
<td>No (Arad et al, 10 2000)</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Ceci et al,11 1997</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Detrano et al,17 1999</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Doherty et al,11 1999</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yang et al,11 1999</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Arad et al,10 2000</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Raggi et al,5 2000</td>
<td>No (Raggi et al, 10 2001)</td>
<td>Yes</td>
<td>Yes</td>
<td>Crude</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Wong et al,5 2000</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Vliegenthart et al,21 2002</td>
<td>Yes</td>
<td>Yes</td>
<td>No§</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Abbreviations: CAC, coronary artery calcium; EBCT, electron beam computed tomography.

*If data from the same subjects were presented in a subsequent article in a more complete form, the article was not considered the definitive data presentation. The article thought to contain the definitive data presentation is listed in parentheses.

†If patients were noted to be symptomatic or also received a coronary angiogram or stress test (and were not specifically noted to be asymptomatic), the patients in the article were determined to be symptomatic and the article was not included in the meta-analysis.

‡If the distributions of events and total persons were reported for specific CAC scores or CAC score–specific risk estimates were reported in any way, the article was determined to have an “extractable” score-specific risk.

§This is a cross-sectional study. Persons in the sample who had had a heart attack in the past (before their EBCT scan) were compared with persons who had not had an attack. There was no follow-up after EBCT scanning presented, so this study was found to be ineligible.
reported. Differences in measurement of CHD risk factors (direct or by patient history), outcome adjudication (blinded or not), tomographic slice thickness (3 mm or 6 mm), and proportion of female subjects may have contributed to the observed differences in the 2 highest CAC score categories (Figure 2). Inspection and influence diagramming showed that 1 study, which reported the lowest relative risk measurements, was primarily responsible for these differences. This study was also the only one to measure coronary artery disease risk factors directly and use an EBCT slice thickness of 6 mm, was 1 of 2 studies with blinded outcome adjudication, and included the lowest proportion of women (11%). If we excluded this study, relative risks in the remaining 3 studies were similar and summary estimates were higher: 1.6 (95% CI, 1.7-4.0) for the CAC score 1 to 100, 2.8 (95% CI, 1.1-7.6) for the 101 to 400, and 17 (95% CI, 6.9-40.0) for the greater than 400 categories (all P values for heterogeneity > .32). Meta-analysis of the 2 studies in which the outcome adjudication process was blinded yielded lower relative risks: 1.7 (95% CI, 1.1-2.7) for the CAC score 1 to 100, 3.0 (95% CI: 1.3-6.9) for the 101 to 400, and 4.3 (95% CI: 1.5-12.0) for the greater than 400 categories (all P values for heterogeneity > .17).

In the present study, we show that CAC is associated with an increased risk of CHD events, even when other risk factors for CHD are taken into account. The relative risks associated with increasing CAC score are at least as large as those associated with established CHD risk factors. Persons with even low amounts of CAC (CAC score, 1-100) have about twice the risk of CHD events compared with persons who have no evidence of CAC (relative risk, 2.1). and high CAC scores (>400) are associated with very

Table 2. Characteristics of Studies Selected for Meta-analysis

<table>
<thead>
<tr>
<th>Source</th>
<th>Subjects</th>
<th>Slice Thickness, mm</th>
<th>Follow-up, Mean Duration; % Completed</th>
<th>No. of Events/Types (No.)</th>
<th>Blinded Outcome Adjudication</th>
<th>Annual Event Rate, %†</th>
<th>CHD Risk Factors Assessed, Risk Factor (Method of Assessment)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang et al, 1999</td>
<td>N = 1196; age (mean ± SD), 66 ± 8 y; 11% female; 12% nonwhite</td>
<td>6</td>
<td>41 mo; 99</td>
<td>46/CHD death (17), nonfatal MI (29)</td>
<td>Yes</td>
<td>1.1</td>
<td>Age (continuous), sex, diabetes mellitus (direct, categorical), hypertension (direct, categorical), smoking (direct, categorical), LDL-C and HDL-C (direct, continuous), family history of CAD (history, categorical),§ LVH (direct, categorical), alcohol use (direct, categorical)</td>
</tr>
<tr>
<td>Arad et al, 2000</td>
<td>N = 1172; age (mean ± SD), 53 ± 11 y; 29% female; 5% nonwhite</td>
<td>3</td>
<td>43 mo; 99.6</td>
<td>39/CHD death (3), nonfatal MI (15), revascularization (21)</td>
<td>No¶</td>
<td>0.5</td>
<td>Age (continuous),§ sex,§ diabetes mellitus (history, categorical), hypertension (history, categorical), smoking (history, categorical),§ hypercholesterolemia (history, categorical), family history of CHD (history, categorical)§</td>
</tr>
<tr>
<td>Wong et al, 2000</td>
<td>N = 926; age (mean ± SD), 54 ± 10 y; 21% female; % nonwhite, NR</td>
<td>3</td>
<td>39.6 mo; 61</td>
<td>28/CHD death (0), nonfatal MI (6), stroke (2), revascularization (20)</td>
<td>Yes</td>
<td>0.2</td>
<td>Age (NR),§ sex,§ diabetes mellitus (history, categorical),§ hypertension (history, categorical),§ smoking (history, categorical),§ hypercholesterolemia (history, categorical)§</td>
</tr>
<tr>
<td>Raggi et al, 2001</td>
<td>N = 676; age (mean ± SD), 52 ± 10 y; 49% female; % nonwhite, NR</td>
<td>3</td>
<td>32 mo; NR</td>
<td>30/CHD death (9), nonfatal MI (21)</td>
<td>No¶</td>
<td>1.7</td>
<td>Age (continuous),§ sex,§ diabetes mellitus (history, categorical),§ hypertension (history, categorical),§ smoking (history, categorical), hypercholesterolemia (history, categorical)§</td>
</tr>
</tbody>
</table>

Abbreviations: CHD, coronary heart disease; EBCT, electron beam computed tomography; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; LVH, left ventricular hypertrophy; MI, myocardial infarction; NR, not reported.

*Percentage of persons originally studied for whom the presence or absence of cardiac events was obtainable.
†Calculated from total number of MI and CHD deaths/total estimated person-years of observation.
‡Assessment of CHD risk factors was considered “direct” when an actual measurement was taken (ie, by sphygmomanometry) and/or by “history” when the patients were asked about their history or medication use to assess presence of a risk factor. Whether the risk factor was included in the multivariate model as a “categorical” variable or a “continuous” variable was also noted.
§The risk factor was considered in the modeling process but not included in the final multivariate model.
¶Verified by communication with authors.
#The risk factor was considered in the modeling process, but it is unclear whether it was actually included in the final multivariate model.
high relative risks (4.3-17.0). In comparison, the presence of diabetes or tobacco use or extreme values of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), or blood pressure confer a relative risk of approximately 1.5 to 3.4.22 Our findings are consistent with a previous meta-analysis6 but are more clinically applicable because they are adjusted for established risk factors.

More precise estimates of the relative risks associated with medium to high CAC scores would be helpful for clinicians and researchers, but large differences among studies make this goal currently unattainable. The source of these differences has been the subject of ongoing public debate23-30; the present analysis serves to clarify and extend that discussion in several ways. First, through our data standardization process, we make it possible to directly compare results across studies. Second, we document that the evident differences in study results are not likely to be merely the result of chance. Finally, our analysis of different subgroups of studies (Figure 2) helps identify which study characteristics may have accounted for the observed differences.

For example, 2 study characteristics previously thought to be important do not appear to account for differences among studies. Some have postulated that studies including patients with high average CHD risk might find the CAC score less helpful in predicting risk28,31; this trend was not evident. Others contend that studies including myocardial infarctions, CHD death, and revascularizations (“soft” CHD events) might find the CAC score to be more predictive because high CAC scores may in themselves lead to more aggressive revascularization.16 Again, no such trend was evident.

Table 3. Adjusted Odds Ratios Associated With Different CAC Scores as Presented in Each Study and After Standardization

<table>
<thead>
<tr>
<th>Source</th>
<th>CAC Score as Formulated in Each Study</th>
<th>Relative Risk* (95% CI)</th>
<th>CAC Score in Standard Categories</th>
<th>Relative Risk† (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yang et al,11 1999</td>
<td>Odds ratio, adjusted per unit increase in log(CAC score + 1)</td>
<td>1.44 (1.05-1.97)</td>
<td>0</td>
<td>1.0 (Reference)</td>
</tr>
<tr>
<td>Arad et al,10 2000</td>
<td>>80 (vs <80)</td>
<td>14.3 (4.9-42.3)</td>
<td>0</td>
<td>1.0 (Reference)</td>
</tr>
<tr>
<td></td>
<td>>160 (vs <160)</td>
<td>19.7 (6.9-56.4)</td>
<td>1-100</td>
<td>1.1 (0.1-13)</td>
</tr>
<tr>
<td></td>
<td>>600 (vs <600)</td>
<td>20.2 (7.3-55.8)</td>
<td>101-400</td>
<td>11 (3.3-32)</td>
</tr>
<tr>
<td>Wong et al,7 2000</td>
<td>0</td>
<td>1 (Reference)†</td>
<td>0</td>
<td>1.0 (Reference)</td>
</tr>
<tr>
<td></td>
<td>1-15</td>
<td>0.72 (0.08-6.55)</td>
<td>1-100</td>
<td>2.3 (0.6-8.9)</td>
</tr>
<tr>
<td></td>
<td>16-80</td>
<td>3.29 (0.85-12.84)</td>
<td>101-400</td>
<td>5.7 (1.5-22)</td>
</tr>
<tr>
<td></td>
<td>81-270</td>
<td>4.54 (1.22-16.84)</td>
<td>>400</td>
<td>8.4 (2.3-31)</td>
</tr>
<tr>
<td></td>
<td>≥276</td>
<td>8.79 (2.20-35.08)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raggi et al,12 2001</td>
<td>Odds ratio, adjusted per percentile increase in age- and sex-adjusted CAC percentile score</td>
<td>1.03 (1.02-1.05)</td>
<td>0</td>
<td>1.0 (Reference)</td>
</tr>
<tr>
<td></td>
<td>1-100</td>
<td>1.0 (Reference)</td>
<td>1-100</td>
<td>2.7 (1.7-4.3)</td>
</tr>
<tr>
<td></td>
<td>101-400</td>
<td>11.0 (3.7-32.0)</td>
<td>>400</td>
<td>20.0 (5.2-79.0)</td>
</tr>
</tbody>
</table>

Abbreviations: CAC, coronary artery calcium; CI, confidence interval.

*Relative risk was estimated by the odds ratio10-12 or the relative hazard7 in the original studies.
†Odds ratios were used for the standardized estimate of relative risk in all studies.
‡Confidence intervals were obtained by written communication with Nathan D. Wong, PhD (July 9, 2002).

Figure 1. Adjusted odds ratios (GRs) comparing risk of a coronary heart disease event in persons with low (1-100), medium (101-400), and high (>400) coronary artery calcium (CAC) scores to persons without calcification. Error bars indicate 95% confidence interval (CI).
come adjudication and those reporting indirect measurement of established CHD risk factors generally reported higher relative risk estimates, which could be consistent with bias from measurement error. On the other hand, differences in study results may also be explained by differences in EBCT scanning technique: the only study
using a 6-mm EBCT slice technique found significantly lower relative risks, which could be consistent with lower scan sensitivity and less power to identify very low-risk individuals.

Unexpectedly, the proportion of female subjects in each study was also associated with study results: studies in which more women were enrolled showed larger relative risk estimates. Arad et al30 commented on a small, insignificant trend in the opposite direction within their study; none of the other authors noted testing for such interaction. Previous comparisons between men and women in the sensitivity and specificity of the CAC score in predicting angiographic stenoses have shown mixed results, with 1 study finding higher specificity in women,32 1 finding lower sensitivity in women,33 and 1 finding similar test characteristics in men and women.34 While this effect could be the result of confounding by other differences in study characteristics, it highlights the importance of inclusion and separate analysis of women in future studies of CAC and CHD.

Our analysis has some limitations. First, the standardization process that was required to compare results between studies is in itself not standard or routine. The problem of standardizing disparately presented results between studies is in itself not standard or routine. A score higher than 100, however, might lead us to recommend both continued aspirin use and more aggressive lipid control aiming for a goal LDL-C level of less than 100 mg/dL (<2.6 mmol/L).4 Using the more conservative estimates reported in our analysis from the 2 studies using blinded outcome adjudication, her posttest CHD risk estimates change somewhat (8%, 14%, 23%, and 31%), but the clinical implications are the same. Deciding when and in whom such risk stratification might be worthwhile and cost-effective requires formal decision analysis and economic modeling, but this analysis suggests that measuring a patient’s CAC score may sometimes provide valuable information for clinicians.

Several ongoing cohort studies, such as the Multi-Ethnic Study of Atherosclerosis,37 the St Francis Heart Study,38 and the Coronary Artery Risk Development in Young Adults (CARDIA) Study,39 will address many of the problems inherent in earlier studies. We believe, however, that our meta-analysis has already answered 1 important, unresolved question: Does the CAC score predict coronary events even when standard CHD risk factors are taken into account? The answer, at least among the populations represented in these studies, is yes. Whether these results are valid in other populations and whether the added predictive value of the CAC score is worth the cost of a computed tomographic scan are important questions for further study.

Accepted for publication August 1, 2003.

Dr Pletcher was supported by grant D14 HP00178 from the Health Resources and Services Administration, Rockville, Md.

We would like to thank Chuck McCulloch, PhD, Ya- don Arad, MD, Paolo Raggi, MD, Nathan D. Wong, PhD, and Rita Redberg, MD, for their cooperation and input.

Corresponding author and reprints: Mark J. Pletcher, MD, MPH, Department of Epidemiology and Biostatistics, University of California, San Francisco, 500 Parnassus Ave, MU 420 West, Box 0560, San Francisco, CA 94143 (e-mail: mplecher@epi.ucsf.edu).